Orientation and confinement of cells on chemically patterned polystyrene surfaces.
نویسندگان
چکیده
UV/ozone oxidation was combined with a photomasking technique to produce adjacent regions of different chemistry on polystyrene (PS) surfaces. The surface chemistry and topography were studied using AFM, XPS and contact angle measurements. The physicochemical patterns were visualised by the condensation of water vapour upon the surfaces and by the differential attachment of Chinese hamster ovarian (CHO) cells. The orientation of CHO cells on 55 and 125 microm wide oxidised PS strips were measured and found to be highly dependent on the width of the oxidised feature. CHO cells in relatively close proximity to a linear polar/non-polar border showed significant axial alignment along the border. CHO cells can also be confined to specific regions of the polymer surface. Cells attached to larger areas (75 microm x 75 microm) were found to have a smaller average cell size than cells attached to the smaller (56 microm x 56 microm) areas.
منابع مشابه
Different interfacial behaviors of N- and C-terminus cysteine-modified cecropin P1 chemically immobilized onto polymer surface.
Sum frequency generation (SFG) vibrational spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) were used to investigate the orientation of N-terminus cysteine-modified cecropin P1 (cCP1) at the polystyrene maleimide (PS-MA)/peptide phosphate buffer solution interface. The cCP1 cysteine group reacts with the maleimide group on the PS-MA surface to che...
متن کاملPhotolithographic Technique for Direct Photochemical Modification and Chemical Micropatterning of Surfaces
We describe a photolithographic method for the direct modification and micropatterning of the surface chemical structure of self-assembled monolayers. End-functional azobenzene alkanethiols are designed and synthesized so that, when self-assembled onto gold substrates, an acid-sensitive tert-butyl ester end group is positioned at the air-monolayer interface. Upon exposure to UV radiation in the...
متن کاملControlling the orientation and synaptic differentiation of myotubes with micropatterned substrates.
Micropatterned poly(dimethylsiloxane) substrates fabricated by soft lithography led to large-scale orientation of myoblasts in culture, thereby controlling the orientation of the myotubes they formed. Fusion occurred on many chemically identical surfaces in which varying structures were arranged in square or hexagonal lattices, but only a subset of patterned surfaces yielded aligned myotubes. R...
متن کاملMicro-patterned Polystyrene Substrates for Highly Integrated Microfluidic Cell Culture
Adherent mammalian cells dynamically interact with their extracellular matrix (ECM) and culture substrate. To accommodate this sensitivity, standard culture techniques typically utilize tissue culture polystyrene (TCPS), a treated polystyrene substrate that promotes cell attachment. However, TCPS cannot be easily integrated into microfluidic devices as it is incompatible with conventional fabri...
متن کاملControlling Growth and Osteogenic Differentiation of Osteoblasts on Microgrooved Polystyrene Surfaces
Surface topography is increasingly being recognized as an important factor to control the response of cells and tissues to biomaterials. In the current study, the aim was to obtain deeper understanding of the effect of microgrooves on shape and orientation of osteoblast-like cells and to relate this effect to their proliferation and osteogenic differentiation. To this end, two microgrooved poly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Colloids and surfaces. B, Biointerfaces
دوره 46 2 شماره
صفحات -
تاریخ انتشار 2005